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ABSTRACT

We combine two standard mathematical biology models (SIR and Competing Species) to

analyze the dynamics of two species who compete over resources and fight/spread disease. There

is an invading species who is suddenly introduced to a native species at differing points in the

native species’ natural disease cycle. We simulate the natural disease progression for the native

species and determine how the timing of the invading species impacts whether the invasive

species can succeed in invasion (not die out). We explore cases when the invaders can and cannot

get the disease with varying initial carrying capacities and initial disease prevalence.
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Introduction

The model we study in this paper combines both the SIR model and the competing

species model from classical biology. We first need to introduce background material on these

two models.

SIR Models

One branch of models which pertain to diseases being spread between subpopulations are

called the susceptible-infectious models (SI models) [2, 3]. The simplest model would have one

subpopulation susceptible (not immune) to a disease and another subpopulation who has the

disease and is spreading it. Those spreading the disease stay infected throughout their life and

remain in contact with the susceptible subpopulation. For example, this model matches the

behavior of a disease like herpes.

From this base model, we can add the possibility that an infected individual recovers

from a disease. One standard version of these SIR models assumes lifetime immunity to those

infected who recover, adding a third subpopulation to the model, the recovered individuals [2].

This adds a recovery subpopulation for individuals who recover from the disease and are thus

immune from getting the disease again.  One standard form of the model which does not take

into account birth and death rates looks like

= - , (1.1)𝑑𝑆
𝑑𝑡

β𝑆𝐼
𝑁

= - γI, (1.2)𝑑𝐼
𝑑𝑡

β𝑆𝐼
𝑁

= γI. (1.3)𝑑𝑅
𝑑𝑡
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Here the dependent variables are the number of susceptible individuals (S), the number of

infected individuals (I), and the number of recovered individuals (R). The parameters represent

the following: the rate controlling how often a susceptible-infected contact results in a new

infection (β) and the rate an infected recovers and moves into the resistant phase (γ). The

parameter N represents the total population and equals S + I + R as these are the three

subpopulations that all people in the population fall into. From the equations we see that

N = ((S + I +R) = 0) and therefore N stays constant. Equation (1.1) states that the number of𝑑
𝑑𝑡

susceptible individuals decreases as susceptible individuals come into contact with the infected

individuals and become infected. Equation (1.2) states that the number of infected individuals

increases as susceptible individuals come into contact with infected individuals. However, the

number of infected individuals decreases as infected individuals recover and become resistant to

the disease. Equation (1.3) states that the recovered population increases as infected individuals

become resistant to the disease. Since we do not account for births and deaths, the model

typically starts with a large susceptible subpopulation, a small infected subpopulation, and no

recovered subpopulation. However, as time progresses, eventually all of the susceptible

subpopulation has been infected and then recovers, leaving only a recovered, immune

subpopulation left (since in this model you cannot be reinfected).

If we modify equations (1.1)-(1.3) to include a birth rate (𝝁) and a death rate (𝝂) into the

model and let 𝝁 = 𝝂 to keep the total population constant [2], we get the model

= 𝝁N - - 𝝂S, (1.4)𝑑𝑆
𝑑𝑡

β𝑆𝐼
𝑁
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= - γI - 𝝂I,                                                         (1.5)𝑑𝐼
𝑑𝑡

β𝑆𝐼
𝑁

= γI - 𝝂R. (1.6)𝑑𝑅
𝑑𝑡

Here new births provide more susceptible individuals to the population, sustaining an epidemic

or allowing new individuals to get and spread the disease throughout the population. For

example, this is the case when diseases are endemic to a region.

Another standard recovery model is the SIRS model. In this model we assume that an

individual’s immunity may wane over time. This allows recovered individuals to return to a

susceptible state. This is the case with a disease like influenza where getting one year’s strand

might protect you for that season, however, next season it provides no benefit. One standard

form of the SIRS model is

= + 𝜁R , (1.7)𝑑𝑆
𝑑𝑡

β𝑆𝐼
𝑁

= - γI, (1.8)𝑑𝐼
𝑑𝑡

β𝑆𝐼
𝑁

= γI - 𝜁R. (1.9)𝑑𝑅
𝑑𝑡

Here the only new parameter is the loss of immunity rate (𝜁). This model predicts oscillating

subpopulations of infected and susceptible individuals as individuals go from being infected, to

having temporary immunity, to being susceptible again. Note that because there is no permanent

resistance built up over time, individuals can be reinfected over and over again.
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In any of the versions of the model just described, disease dynamics will reach a steady

state or period where S, I, and R are not changing as time increases. This steady state solution

can be found when = 0, = 0, and = 0.𝑑𝑆
𝑑𝑡

𝑑𝐼
𝑑𝑡

𝑑𝑅
𝑑𝑡

Competing Species Model

Another class of classical models in mathematical biology describes when two or more

species compete over common resources. In some versions of these models, competition has two

forms: interspecies and intra-species interactions, i.e., between individuals in different species

and between individuals in the same species. In the absence of the other species, each species

grows according to a logistic equation [4].  In logistic growth, a species grows until it hits the

carrying capacity, or the maximum number of individuals that the environment can carry.

Logistic growth can be modeled as

= rN , (1.10)𝑑𝑁
𝑑𝑡 1 − 𝑁

𝐾  ⎡⎣ ⎤⎦

where N(t) is the size of the population at time t, r is the intrinsic growth rate (the difference

between the birth and death rates), and K is the carrying capacity. However, the presence of one

species lowers the per capita growth rate of the other species since they compete for resources.

Now if we extend this logistic growth model to include two species with competition effects, we

get the following system

= r1N1 ,                                       (1.11)
𝑑𝑁

1

𝑑𝑡 1 −
𝑁

1

𝐾
1

−  
𝑁

2
𝑐

12_

𝐾
1

 
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦
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= r2N2 .                                       (1.12)
𝑑𝑁

2

𝑑𝑡 1 −
𝑁

2

𝐾
2

 −  
𝑁

1
𝑐

21_

𝐾
2

 ⎡⎢⎣
⎤⎥⎦

Here the parameters and variables are the following: Ni is the size of the population of species i

at time t, ri is the intrinsic growth rate of species i, Ki is the carrying capacity of species i, and cij

is the competition coefficient which describes the effect on species i of competition with species

j. Intra-specific competition, or the damage done by species i on itself, is described by 1/Ki. Not

only does the species affect its own kind, but the other species competes so that the growth of

species i is hindered by species j, as seen in the third terms in both equations. As we can see, if

for equation (1.11) N2 = 0 (this means that the population of species 2 is 0 and has no effect on

the population of N1 with regards to our competition effects), we get the logistic equation

= r1N1 ,
𝑑𝑁

1

𝑑𝑡 1 −
𝑁

1

𝐾
1

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

which is the same as (1.10).

The Invadability Model

There is a growing body of research which combines both the competing species model and the

SIR models [1, 5, 6, 7]. The model we consider comes from Turner and Bowers [1]. The Turner

and Bowers model has the form

= r1H1(1 - c11H1 - c12H2) - 𝛼1Y1, (2.1)
𝑑𝐻

1

𝑑𝑡

= 𝛽11(H1 - Y1)Y1 + 𝛽12(H1 - Y1)Y2 - Γ1Y1, (2.2)
𝑑𝑌

1

𝑑𝑡

= r2H2(1 - c21H1 - c22H2) - 𝛼2Y2, (2.3)
𝑑𝐻

2

𝑑𝑡

= 𝛽21(H2 - Y2)Y1 + 𝛽22(H2 - Y2)Y2 - Γ2Y2. (2.4)
𝑑𝑌

2

𝑑𝑡
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The variable Hi represents the total population of species i (either species 1 or species 2). The

variable Yi represents the total infected population of species i (either species 1 or species 2). The

difference between Hi and Yi is the total healthy population of species i. The parameters are

positive constants and represent the following: ri is the intrinsic per capita rates of population

growth, cij is the competition coefficients, αi is the per capita rates of pathogen-induced mortality,

βij is the disease-transmission coefficients, Γi is the per capita net rates of loss of infected

individuals, which includes the effects of natural mortality, pathogen-induced mortality, and

recovery. In (2.1)-(2.4), all variables have been rescaled and hence all variables and parameters

are dimensionless.

An important thing to notice with the disease component of the model is that the disease

can be transmitted within a species or between species. The disease-transmission coefficients

(βij) dictate how easily the infection can spread in either scenario. Depending on how these

parameters change, either species could be more or less susceptible to getting or spreading the

disease both amongst themselves or to the other species. This is important as Turner and Bowers

use the model to explore invadability with the presence of disease. Invadability simply means

how the introduction of another species changes both the original species population and the

“invading” (the newly introduced species’) population. The basic question is whether the

introduction of the new species allows both species to coexist or whether one species dies out

and the other survives.
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Turner and Bowers have found theoretical results to see when these species coexist or

whether one species dies out and the other survives. We present these results to have a theoretical

understanding of the impact of invadability. Firstly, consider the case where there is no disease in

the model and only competition occurs. Since we do not consider disease, the model simplifies to

a competing species model, however, the results are presented in the context of invadabilty. We

utilize equations 2.1 and 2.3 and set Yi = 0 since the Yi variables describe disease in the model.

Consider the case when species 2 is invading species 1 at equilibrium (K1). The average lifetime

of an individual in species 2 is 1/b2 where b2 is the per capita death rate of species 2. Species 2

invading species 1 can be derived from equation 2.3: ignoring the H2 term (since it describes

species 2 encountering species 2) and noticing that H1 is the population of species 1 (which is at

equilibrium K1), we get the average increase in population for species 2 when invading species 1

at equilibrium is average lifetime multiplied by the growth rate or

. (2.5)
𝑟

2
(1 − 𝑐

21
𝐾

1
)

𝑏
2

An invasion of species 1 requires the population growth rate to be greater than the death

rate for species 2 (r2 > b2) since if the death rate is greater than the growth rate, the species will

die out. So, species 2 can invade if and only if (1 - c21K1) > 0. If instead of invading species 1

(with density K1) the individual encounters its own species (with density K2), the average

increase in population is

, (2.6)
𝑟

2
(1 − 𝑐

22
𝐾

2
)

𝑏
2

from similar construction as (2.5). At equilibrium this must equal zero (this is the

definition of equilibrium) and we obtain the provision c22K2 = 1. We can write the inequality
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c21K1 <  c22K2 since c22K2 = 1 > c21K1 and now we yield invadability results: Species 1 is

invadable by species 2 when the interspecific force of competition for the invader (c21K1) is less

than the interspecific force (c22K2) for the species invaded. This applies the other way when

species 2 is invadable by species 1 (c12K2 < c11K1).

We now consider all of the possible combinations of invadability and their required

invadability forces (the cij), and create a table to compare when species 1 is invadable by species

2 and vice versa.  As we can see, there are four possible outcomes in our model depending on

each species’ invadable and not invadable forces (these are the cij). Three of those outcomes

involve one species surviving and the other species being eliminated. However, if both species

have weak invadability forces they can coexist.

Table 1.1: Cases for Invadability in Purely Competitive Interactions [1]

Case Species 1 Species 2 Outcome

1 Not invadable
force21 > force22

Invadable
force12 < force11

Species 1 survives and species 2 is eliminated.

2 Invadable
force21 <  force22

Not invadable
force12 > force11

Species 1 is eliminated and species 2 survives.

3 Not invadable
force21 > force22

Not invadable
force12 > force11

Species 1 survives and species 2 is eliminated.
OR
Species 1 is eliminated and species 2 survives.
(Outcome Depends on Initial Densities.)

4 Invadable
force21 <  force22

Invadable
force12 < force11

Species 1 and species 2 coexist.

Employing similar techniques as the purely competitive case above, we can look at

purely infective interaction by letting the competition coefficients cij = 0. If we follow the same

analysis as above we would yield a similar conclusion in regards to invadability as in the only
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competitive case. The difference in the outcome simply changes from “species i survives and

species j is eliminated” to “species i survives and supports the pathogen and species j is

eliminated.” Of course, for case 4 this changes to “species 1 and 2 coexist and support the

pathogen.”

Simulations

Using the Turner and Bowers model, we run simulations to see how invadability changes

depending on what point the native species is at in their natural disease cycle. We consider two

cases: One where the invaders can get the disease and another case where the invaders cannot get

the disease. We first get initial condition values from the natural disease cycle to utilize for the

two cases of invasion. We run these simulations in MATLAB and include a coding section for

the natural disease cycle simulations, the case when the invader cannot get the disease, and the

case when the invader can get the disease. We determine the influence of invasion time for each

case and come up with final remarks.

The paper “Effects Of Invasion Timing In A One-Dimensional Model Of Competing

Species With An Infectious Disease” [8] is closely related to this paper. In [8] the author

considers a more complex case of simulating natural disease progression where spatial

dimension (where species 1 and 2 are located) matters. This leads to a model that has the form of

a system of coupled partial differential equations. This paper utilizes a less complex ODE model,

eliminating spatial dependencies. However, both [8] and this paper have the same theme of

attempting to answer the importance of disease timing in invadability.
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Natural Disease Cycle Simulations

Our goal is to see how invadability changes depending on the time the invasion occurs.

Firstly, we consider the case where only the native species is alive and no invasion takes place at

all. We can calculate the total population and infected population of varying times throughout the

natural disease cycle for the native species. Later, we use these results to simulate how the

introduction of another species during these different periods in the cycle will affect whether

either species will die out or if they will coexist.

Since no invasion is taking place, we will only have terms relating to the native species.

From our Turner and Bowers model (2.1)-(2.4), letting H2 and Y2 equal 0 (since we are only

interested in the natural disease cycle of the native species) yields

= r1H1(1 - c11H1) - 𝛼1Y1, (3.1)
𝑑𝐻

1

𝑑𝑡

= 𝛽11(H1 - Y1)Y1 - Γ1Y1. (3.2)
𝑑𝑌

1

𝑑𝑡

Recall that H1 represents the total population of species 1 and Y1 represents the total

infected population of species 1. The difference between H1 and Y1 is the total healthy

population of species 1. In order to simulate the natural disease cycle for the native species as

well the invasions by the invading species, we obtain parameter values from Turner and Bowers

[1] and utilize these values unless otherwise stated. These parameter values are given in table

2.1. Recall that (2.1)-(2.4) are rescaled so that all the parameters whose values are given in table

2.1 are dimensionless.
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Table 2.1: Parameter Values

Parameter Definition Value

r1 The population growth rate (native) 1

c11 Competitive effect of natives on natives 0.142857

c12 Competitive effect of natives on invaders 0.083333

α1 Pathogen-induced mortality rate (native) 2

β11 Disease-transmission of natives on natives 0.75

β12 Disease-transmission of natives on invaders 0.4

Γ1 Loss of infected individuals rate (native) 2

r2 The population growth rate (invader) 0.2

c21 Competitive effect of invaders on natives 0.125

c22 Competitive effect of invaders on invaders 0.090909

α2 Pathogen-induced mortality rate (invader) 4

β21 Disease-transmission of invaders on natives 0.3

β22 Disease-transmission of invaders on invaders 0.5

Γ2 Loss of infected individuals rate (invader) 1
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Figure 2.1: Disease Cycle

The results from a simulation with initial conditions H1(0) = 7 and Y1(0) =  .7 are shown

in figure 2.1. For times 1 through 8 we notice interesting changes in the population. The native

population starts at the initial starting population of 7 (our H1(0) = 7 initial condition) and

decreases to a population of slightly below 3 by time 3. The native species’ population then

oscillates between values of 3-4 and levels off as time increases. The susceptible population

follows a similar trend. However, it starts at a slightly lower initial population and has a lower

minimum population value that occurs slightly earlier than the healthy population. Finally, the

infected population increases for the first two units of time. However, it decreases and has

decaying oscillations. This is due to the susceptible population being quickly infected. However,

the infected population increases and with fewer susceptible individuals, the infected population
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dies off and gives a recovery period for the susceptible population. After approximately time 8

the population has small oscillations but remains roughly at the carrying capacity. These minor

oscillations occur as time increases forever and so, since there is little change beyond time 8,

we will simply consider the population sizes at times 1, 2, 3,…, 8 for the initial conditions in our

invasion simulations.

We consider a total of 9 cases for our initial conditions. We consider 3 initial starting

populations for the native species and 3 initial infected rates. For the initial starting populations

we consider 3.5, 7, and 14 since these correspond to K/2, K, and 2K where K is the carrying

capacity (K = 1/c11 or K = 7 for this set of parameters). We also consider an initial disease

prevalence of 5%, 10%, and 20%. For figure 2.1, we utilized values H1(0) = 7 and Y1(0) =  .7 to

show that only values 1 through 8 have changes that deviate far from the carrying capacity,

however, any combination would suffice to display this feature. We display the results of these

natural disease cycle simulations, which are the population sizes at times 1 through 8, for these 9

initial conditions in tables 2.2-2.4. The top number represents the total population at that time

and the bottom number represents the infected population at that time.
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Table 2.2: Disease Cycle Simulations for 5% Initial Disease Prevalence (total population above

diseased population)

Time 1 2 3 4 5 6 7 8

K = 3.5 4.6416
0.4285

4.6254
1.1550

3.6619
1.3069

3.1610
0.9403

3.2517
0.7419

3.5418
0.7424

3.7028
0.8509

3.6488
0.9334

K = 7 5.1449
2.0824

3.1144
1.3815

2.7839
0.7425

3.2243
0.5805

3.7417
0.6842

3.8775
0.9132

3.6548
1.0095

3.4482
0.9318

K = 14 4.1111
3.1741

2.1798
0.9235

2.4796
0.4241

3.4092
0.3869

4.1589
0.6429

4.1097
1.0674

3.5815
1.1097

3.3087
0.9091

Table 2.3: Disease Cycle Simulations for 10% Initial Disease Prevalence (total population above

diseased population)

Time 1 2 3 4 5 6 7 8

K = 3.5 4.2789
0.6435

4.1520
1.1167

3.5477
1.1267

3.2746
0.8970

3.3692
0.7780

3.5650
0.7935

3.6507
0.8705

3.6009
0.9161

K = 7 4.4755
2.1656

2.8682
1.1545

2.8289
0.6549

3.3702
0.5741

3.8384
0.7340

3.8553
0.9643

3.5883
1.0056

3.4198
0.9062

K = 14 3.6608
2.8673

2.0917
0.8161

2.5128
0.3876

3.4951
0.3774

4.2262
0.6649

4.1029
1.1019

3.5442
1.1077

3.2918
0.8951

Table 2.4: Disease Cycle Simulations for 20% Initial Disease Prevalence (total population above

diseased population)

Time 1 2 3 4 5 6 7 8

K = 3.5 3.7360
0.8244

3.6960
0.9422

3.5410
0.9420

3.4651
0.8827

3.4925
0.8470

3.5488
0.8522

3.5718
0.8743

3.5575
0.8863

K = 7 3.7864
2.0325

2.6620
0.9372

2.9005
0.5707

3.5374
0.5707

3.9360
0.7946

3.8200
1.0157

3.5177
0.9955

3.3946
0.8787

K = 14 3.2680
2.5645

2.0159
0.7209

2.5468
0.3539

3.5791
0.3672

4.2922
0.6857

4.0969
1.1349

3.5094
1.1057

3.2758
0.8820
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The data in tables 2.2 to 2.4 display several noteworthy trends. Firstly, we can see that the

time with the lowest total population differs slightly depending on the carrying capacity. Time 4

has the lowest total population for K = 3.5, time 2 for K = 14, and times 2 and 3 for K = 7. Thus

a lower carrying capacity allows the total population to reach its lowest value at a later time than

a greater carrying capacity can. We can see initial disease prevalence plays a role in total

population rate with those having higher initial disease prevalence having lower total populations

at both the beginning and ending times but having greater total populations during the middle of

the disease cycle.

Now that we have our native species’ disease cycle for varying initial conditions, we can

see how timing affects invadabilty. We consider two different cases. Firstly, we consider the case

when only the native species can get the disease. We then consider the case when both the native

species and the invaders can get the disease. We compare how these two cases differ and offer

remarks in both scenarios.

Case when Invaders cannot get the Disease

In the case when the invaders cannot get the disease we set Y2 = 0 in 2.4 since this is the

size of the subpopulation of the diseased invaders. Thus we are left with the model

= r1H1(1 - c11H1 - c12H2) - 𝛼1Y1, (3.3)
𝑑𝐻

1

𝑑𝑡

= 𝛽11(H1 - Y1)Y1- Γ1Y1, (3.4)
𝑑𝑌

1

𝑑𝑡
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= r2H2(1 - c21H1 - c22H2). (3.5)
𝑑𝐻

2

𝑑𝑡
To run our simulations we do the following: Firstly, we plug in our disease cycle values

from tables 2.2-2.4 for our initial conditions for the native species to simulate that they are

getting invaded by the invading species at the corresponding times in the disease cycle. For our

third initial condition (since we have a system of 3 ordinary differential equations), we utilize

whatever the original initial population size was for the native species. Thus we assume the

invaders total population size is equivalent to the original population size of the native species’

(either k = 3.5, 7, or 14).

Figure 2.2: Simulation when Invaders are Immune

If we run every simulation from tables 2.2-2.4 we notice that for all but three cases, both

species survive (neither species dies out) and are able to coexist. Figure 2.2 displays an example

when both species survive using the values carrying capacity 14, disease prevalence = 20%, and

the invasion occuring at time = 2 in the natural disease cycle. We can see that the invading
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population decreases to its steady solution while the native species is able to recover and increase

to its steady solution. The disease dies out quickly (by time = 3), as indicated by the dashed

curve in the lower left corner of figure 2.2.

To analyze the effect of invasion timing we utilize the following approach: We consider

times 1, 4, and 8 from tables 2.2-2.4 for each carrying capacity and display the simulations to see

how they differ. We choose these three times since these approximately correspond to the

beginning, middle, and end of the possible “interesting” invasion times. The different carrying

capacities will yield significant changes to the population dynamics. However, our results

indicate that the initial disease prevalence does not make significant changes to the population

dynamics. So, we will not discuss these changes until mentioning how carrying capacity changes

the results of the invasions. Thus we will display a total of nine graphs consisting of the carrying

capacities 3.5, 7, and 14 with each carrying capacity at times 1, 4, and 8. Then we compare how

initial disease prevalence affects results. A 5% initial disease prevalence will be assumed for all

simulations but the final initial disease prevalence case. There we compare the 5% initial disease

prevalence to 20% initial disease prevalence to compare how they differ.
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Figure 2.3-2.5 (Clockwise): Simulations for K = 3.5 at Times 1, 4, and 8

In figures 2.3-2.5 we display simulations for times 1, 4, and 8 with a carrying capacity of

3.5 and initial disease prevalence of 5% (table 2.2). The first and most noticeable difference

between these simulations at different times is the starting population for the native population.

At time 1 the native population starts in between 4 and 5, at time 4 it starts slightly greater than

3, and at time 8 it starts between 3 and 4. All three simulations have a dip in native population at

slightly different times depending on the timing of the invasion. However, all simulations then
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follow a similar increase and decrease in native population until the native population stables off

with significantly smaller oscillations. The invading population increases similarly in all 3

simulations, appropraching some steady state. Finally, the infected native population follows

similarly to the native population where the initial populations are different. However, at some

slightly different time they have similar decreasing and then increasing oscillations and continue

oscillating downwards to a smaller population until they reach a population of 0.

Figures 2.6-2.8 (Clockwise): Simulations for K = 7 at Times 1, 4, and 8
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In figures 2.6-2.8 we display simulations for times 1, 4, and 8 with a carrying capacity of

7 and initial disease prevalence of 5% (table 2.2). A similar pattern exists here as with the case

where the carrying capacity was 3.5. The invading population approaches a steady state in a

similar manner in all three simulations. The main difference between the native populations in

these three simulations is the starting population and its drop to the population value between 1

and 2 (and how much it differs). The general shape of the curve is similar as is the value it

appears to approach, however, the initial population determines how much the native population

will drop to (a larger initial native population means a lower minimum population as the first

drop). Finally, the infected native population starts at different populations between the

simulations. However, they all drop to 0 quickly and have similarly shaped curves (a larger

initial native infected population will make the time when they reach a population of 0 happen

sooner).
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Figures 2.9-2.11 (Clockwise): Simulations for k = 14 at Times 1, 4, and 8

In figures 2.9-2.11 we display simulations for times 1, 4, and 8 with a carrying capacity

of 14 and initial disease prevalence of 5% (table 2.2). Here we notice a very interesting result.

For the simulation at time 1, the native population dies out, however, for the time 4 and time 8

simulations, the native species survives and they have similar curves as in the previous cases

with carrying capacity 3.5 and 7. The infected native population dies out quickly in all three

simulations. Finally, the invading population is approaching similar values in the time 4 and time
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8 simulations. However, due to the lack of a competing species after it dies out, the time 1

simulations invading population will approach a greater value than in the other two cases.

Figures 2.12-2.14 (Clockwise): Simulations for k = 14 at Times 1, 4, and 8 with initial

disease prevalence of 20%

We can see no noticable effects of the initial disease prevalence comparing the 20%

initial disease prevalence at carrying capacity 14 (Figures 2.12-2.14) with the initial disease

prevalence of 5% with carrying capacity 14 (Figures 2.9-2.11) with this window range. To better

compare the changes, we look at times 1 and 8 at a smaller time interval (time = 0-2).
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Figures 2.15-2.16 (Left then Right): Simulations for k = 14 at Time 1 with initial disease

prevalence of 5% and 20%

With this smaller time interval in figures 2.15-2.16 we can see the change that occurs.

With the 5% initial disease prevalence the native starting population is larger than the 20% native

population, as is the infected native population. However the underlying curve does not seem to

change as in both cases both the native and infected native population drop to a population of 0

quickly.

24



Figures 2.17-2.18 (Left then Right): Simulations for k = 14 at Time 8 with initial disease

prevalence of 5% and 20%

In figures 2.17-2.18 the differences are hardly noticeable. The native populations differ

by less than .2 at all times on this interval. The populations follow similar trends for both initial

disease prevalences. Therefore, for cases where the initial total population and diseased

population for the native populations disease cycle are similar, the differences between initial

disease prevalence is minimal. However, there are more profound changes for native population

disease cycles which have a greater difference in their values.
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Case when Invaders can get the Disease

In the case when the invaders are immune, we use the entire Turner and Bowers model

(2.1)-(2.4). We use the same initial conditions as in the previous subsection, when the invaders

cannot get the disease, except we add an initial diseased population rate for the invading species

(since now there are 4 ordinary differential equations and we need a 4th initial condition). We

use the same initial disease population rate as the original native species’ initial disease

population rate (5%, 10%, and 20%). This is similar to how we utilized whatever the original

initial population size was for the native species for the previous case when the invaders cannot

get the disease.

Figure 2.19: Simulation when Invaders can get Disease

Figure 2.19 displays an example when the native species is at its lowest total initial

population (Carrying Capacity = 14, Disease Prevalence = 20%, time = 2). We can see that the

invading population decreases significantly within several units of time while the native species
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recovers from the low initial population. Obviously populations cannot be negative and we

ignore the invading population after it reaches a total population of 0 (it cannot recover from a

population of 0). However, the model still relies on these below 0 values and thus, they are still

important. However, we decided to change a parameter value to avoid getting negative

populations. For the remainder of this paper we let α2 = 1. This will give us positive population

values for all our considered cases.

Similarly to how we analyzed the case where the invaders cannot get the disease, we

consider times 1, 4, and 8 from tables 2.2-2.4 for each carrying capacity and display the

simulations to see how they differ. Again, the different carrying capacities will yield significant

changes to the population dynamics. However, the initial disease prevalence will not make

significant changes to the population dynamics. So, we will not discuss these changes until

mentioning how carrying capacity changes the results of the invasions. Thus we will display a

total of nine graphs consisting of the carrying capacities 3.5, 7, and 14 with each carrying

capacity at times 1, 4, and 8. Then we compare how initial disease prevalence affects results. All

our simulations will be done at the initial disease prevalence of 5% except the final initial disease

prevalence case to more consistently compare results.
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Figures 2.20-2.22 (Clockwise): Simulations for K=3.5 at Times 1, 4, and 8

There are several noteworthy observations to make about figures 2.20-2.22 . Firstly, we

notice how the invading population and invading infected population have exactly the same

population at time 0 for all three cases. This is logical since the initial conditions for each were

the same and therefore, they all start at the same values and change as the model progresses (they

are similar for all three cases for the entire time interval [0, 30]). Also, the total invading and the

infected invading populations die out in all three simulations. We see similar changes to the

native and native infected populations as in the case where the invaders could not get the disease.

The starting population for the native population and native infected population are different and
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change the initial decline in population (as well as how long it takes), however, the qualitative

nature of the curves does not change. They all approach the same steady state populations in all

three simulations (the natives all approach a certain value, the infected native all approach a

certain value, invading and infected native populations cases are similar). These observations are

consistent with the case where the invaders could not get the disease. Since the simulations

where K=7 and K=14 are similar to these simulations we display both consecutively.

Figures 2.23-2.25 (Clockwise): Simulations for K=7 at Times 1, 4, and 8
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Figures 2.26-2.28 (Clockwise): Simulations for K=14 at Times 1, 4, and 8

In figures 2.23-2.25 and 2.26-2.28 we display simulations which have common themes

similar to those simulations which we have previously presented. The invading and infected

invading population die out in all cases. However, we see a lower minimum invading population

for K=14 than other carrying capacity levels. Again, the differing times change starting sizes for

the native population and native infected population and change the initial decline in population

(as well as how long it takes). However, the qualitative nature of the curves does not change.

They all approach the same end populations in both sets of three cases (the native, infected
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native, invading, and infected native populations all approach the same values for all three

natural disease cycle times).

Figures 2.29-2.30 (Left then Right): Simulations for K=14 at Time 1 with initial disease

prevalence of 5% and 20%

In figures 2.29-2.30 we look at the effect of the initial disease prevalence on these

simulations. Again, with the 5% initial disease prevalence the native starting population is larger

than the 20% native population, as is the infected native population. However, the underlying

curve does not seem to change. The invading infected population has a noticeable shift as well

but similarly, the underlying curve is the same. This occurs because of our assumption of the

initial disease prevalence for the invading population. Our starting infected population is the

carrying capacity times the initial disease prevalence rate (.7 and 2.8 here respectively). This is

why we start at these population values when time = 0.
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Figures 2.31-2.32 (Left then Right): Simulations for K=14 at Time 8 with initial disease

prevalence of 5% and 20%

In figures 2.31-2.32, similar to the case where the invaders cannot get the disease, the

differences are much smaller at this higher natural disease cycle time value. This is again due to

the initial total population and diseased population for the native populations disease cycle being

similar, so the differences between initial disease prevalence is minimal. However, there are

more profound changes for the native population disease cycles which have a greater difference

in their values.
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Conclusion

With the simulations we have run for both cases (when invaders can/cannot get the

disease) we can establish several important relationships (based on these specific parameter

values). The main way the natural disease cycle plays a role in invadabilty is determining the

initial starting population of the native and infected native populations and the initial drop in

native and infected native populations. The general shape of the curve is similar and so is the

value the populations all approach. This does not change invadability. If the shift is strong

enough, however, it is possible that the invadability case changes (going from coexistence to one

species dying out or vice versa). We saw this case when invaders could not get the disease,

carrying capacity = 14, at time 1, for any initial disease prevalence. Finally, the role of the native

populations disease cycle depends on the initial disease prevalence. Those having higher initial

disease prevalence rates have a lower total population at both the beginning and ending times but

during the middle of the disease cycle, have greater total populations.
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Matlab Code

Natural Disease Cycle Simulations

%Script File for Natural Disease Cycle Simulations
%Name of File is Interspec_Infect_and_CompFig1.m
global rone coneone conetwo alphaone betaoneone betaonetwo gammaone;
global rtwo ctwoone ctwotwo alphatwo betatwoone betatwotwo gammatwo;
rone = 1;
coneone = .142857;
conetwo = .083333;
alphaone = 2;
betaoneone = .75;
betaonetwo = .4;
gammaone = 2;
rtwo = .2;
ctwoone = .125;
ctwotwo = .090909;
alphatwo = 4;
betatwoone = .3;
betatwotwo = .5;
gammatwo = 1;
figure
hold on
init = [7 .7];  %Initial Conditions
t = [0 20];
options = odeset('RelTol',1e-8, 'AbsTol',1e-8);
[t,y] = ode45(@Interspec_Infect_and_Comp_rhs,t,init,options)
plot(t,y(:,1),'k');
plot(t,y(:,2),'--r');
plot(t,y(:,1) - y(:,2),':b')
hold off
xlabel('Time')
ylabel('Population')
legend('Native Population','Infected Population','Susceptible Population')

%Function File for Natural Disease Cycle Simulations
%Name of File is Interspec_Infect_and_Comp_rhs.m
function dy = Interspec_Infect_and_Comp_rhs(t,y)
global rone coneone conetwo alphaone betaoneone betaonetwo gammaone;
global rtwo ctwoone ctwotwo alphatwo betatwoone betatwotwo gammatwo;
dy = zeros(2,1);
dy(1) = (rone).*y(1).*(1-(coneone.*y(1))) - alphaone.*y(2);
dy(2) = (betaoneone).*(y(1) - y(2)).*y(2) - gammaone.*y(2);
% H1 = y(1)
% Y1 = y(2)
% H2 = y(3)
% Y2 = y(4)
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When Invaders cannot get Disease Simulations

%Script File for When Invaders cannot get Disease
%Name of File is Times1to8.m
global rone coneone conetwo alphaone betaoneone betaonetwo gammaone;
global rtwo ctwoone ctwotwo alphatwo betatwoone betatwotwo gammatwo;
rone = 1;
coneone = .142857;
conetwo = 0.091;
alphaone = 2;
betaoneone = .75;
betaonetwo = .4;
gammaone = 2;
rtwo = .2;
ctwoone = .125;
ctwotwo = .090909;
alphatwo = 4;
betatwoone = .3;
betatwotwo = .5;
gammatwo = 1;
figure
hold on
init = [4.2789 0.6435 3.5];
t = [0 200];
options = odeset('RelTol',1e-8, 'AbsTol',1e-8);
[t,y] = ode45(@Times1to8rhs,t,init,options)
plot(t,y(:,1),'k');
plot(t,y(:,2),'--r');
plot(t,y(:,3),':b');
grid
legend('Native Population','Infected Native Population','Invading Population')
xlabel('Time')
ylabel('Population')

%Function File for When Invaders cannot get Disease
%Name of File is Times1to8rhs.m
function dy = Times1to8rhs(t,y)
global rone coneone conetwo alphaone betaoneone betaonetwo gammaone;
global rtwo ctwoone ctwotwo alphatwo betatwoone betatwotwo gammatwo;
dy = zeros(3,1);
dy(1) = (rone).*y(1).*(1-(coneone.*y(1)) - (conetwo.*y(3))) - alphaone.*y(2);
dy(2) = (betaoneone).*(y(1) - y(2)).*y(2) - gammaone.*y(2);
dy(3) = (rtwo).*y(3).*(1-(ctwoone.*y(1)) - (ctwotwo.*y(3)));
% H1 = y(1)
% Y1 = y(2)
% H2 = y(3)
% Y2 = y(4)
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When Invaders can get Disease Simulations

%Script File for When Invaders can get Disease
%Name of File is f4equationmodel.m
global rone coneone conetwo alphaone betaoneone betaonetwo gammaone;
global rtwo ctwoone ctwotwo alphatwo betatwoone betatwotwo gammatwo;
rone = 1;
coneone = .142857;
conetwo = 0.083333;
alphaone = 2;
betaoneone = .75;
betaonetwo = .4;
gammaone = 2;
rtwo = .2;
ctwoone = .125;
ctwotwo = .090909;
alphatwo = 4;
betatwoone = .4;
betatwotwo = .75;
gammatwo = 1;
figure
hold on
init = [3.6488 0.9334 50 .175];
t = [0 50];
options = odeset('RelTol',1e-8, 'AbsTol',1e-8);
[t,y] = ode45(@f4equationmodelrhs,t,init,options)
plot(t,y(:,1),'k');
plot(t,y(:,2),'--r');
plot(t,y(:,3),':b');
plot(t,y(:,4),'-.c');
grid
xlabel('Time')
ylabel('Population')
legend('Native Population','Native Infected Population','Invading Population','Invading Infected Population')

%Function File for When Invaders can get Disease
%Name of File is f4equationmodelrhs
function dy = f4equationmodelrhs(t,y)
global rone coneone conetwo alphaone betaoneone betaonetwo gammaone;
global rtwo ctwoone ctwotwo alphatwo betatwoone betatwotwo gammatwo;
dy = zeros(4,1);
dy(1) = (rone).*y(1).*(1-(coneone.*y(1)) - (conetwo.*y(3))) - alphaone.*y(2);
dy(2) = (betaoneone).*(y(1) - y(2)).*y(2) + (betaonetwo).*(y(1) - y(2)).*y(4) - gammaone.*y(2);
dy(3) = (rtwo).*y(3).*(1-(ctwoone.*y(1)) - (ctwotwo.*y(3))) - alphatwo.*y(4);
dy(4) = (betatwoone).*(y(3) - y(4)).*y(2) + (betatwotwo).*(y(3) - y(4)).*y(4) - gammatwo.*y(4);
% H1 = y(1)
% Y1 = y(2)
% H2 = y(3)
% Y2 = y(4)
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